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Figure 1: Asymmetric remote interaction using WebTransceiVR; two web co-hosts (left and right) are observing the VR user 
(middle) in the virtual environment through web browsers on laptops and mobiles. Spectators can view from the cameras of 
the two web co-hosts. 

ABSTRACT 
Increasing adoption of Virtual Reality (VR) systems in various felds 
has created the need for collaborative work and communication. To-
day, asymmetric communication between a VR user and other non-
VR users remains a challenge. The VR user cannot see the external 
non-VR users, and the non-VR users are restricted to the VR user’s 
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frst-person view. To address this, we propose WebTransceiVR, an 
asymmetric collaboration toolkit which when integrated into a VR 
application, allows multiple non-VR users to share the virtual space 
of the VR user. It allows external users to enter and be part of the VR 
application’s space through standard web browsers on mobile and 
computers. These external users can explore and interact with the 
other users, the VR scene as well as the VR user. WebTransceiVR 
also includes a cloud-based streaming solution that enables many 
passive spectators to view the scene through any of the active cam-
eras. We conduct informal user testing to gain additional insights 
for future work. 
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1 INTRODUCTION 
Virtual reality (VR) is an increasingly popular medium that is being 
used for diferent applications ranging from art, design, medicine, 
entertainment, amongst others. Like with other software, a user 
in VR may have to interact and collaborate with others while they 
perform a task. However, these users may not be using a VR headset. 
There is a growing interest for such an asymmetric interaction 
between users who operate across VR and non-VR platforms [14, 17, 
28]. These interactions occur in numerous domains. In fact, today 
during the development of a VR application, it is common to show 
and get feedback from remotely located collaborators who may not 
have access to VR headsets. A powerful use case of VR is education. 
It may be enticing for an instructor to use VR to teach concepts 
that involve complex 3D information. However, many students lack 
access to VR devices, especially if the instruction is remote. Non-VR 
students have limited ways to interact with the instructor due to 
the asymmetry of the display and input abilities between them. 
This introduces challenges for efective communication. Similar 
issues occur in VR eSports, where event organizers face difculty 
in making the non-VR spectator experience more engaging. In 
contrast to streaming, one way to solve these issues is to gravitate 
towards applications that have a counterpart application capable 
of multi-player style non-VR spectator support. This would require 
each spectator to download a separate app that contains all the 
original graphical assets. Such an application can be heavy and may 
pose specifc demands to be met by the spectator’s computers. 

We seek inspiration from prior work such as TransceiVR [28], 
ShareVR [7], and XRStudio [17]. Both ShareVR and TransceiVR 
support asymmetric communication to allow a VR user and a non-
VR user to collaborate, either in the same physical space [7] or 
using the same computer [28]. However, these tools were designed 
primarily for dyadic interactions and did not scale with viewers. 
In situations like remote learning, VR live streaming, the ability to 
support more than a couple of views as well as a large number of 
passive spectators is key. XRStudio [17] achieves the remote multi-
user sharing of VR educational content. Vreal [32] allows multiple 
spectators to be within the scene of a VR application. However, these 
approaches still require non-VR users to have dedicated applications 
installed as well as access to a VR/AR headset. 

To address these concerns, we propose WebTransceiVR, an asym-
metric collaboration toolkit that brings the non-VR users into the 
shared virtual space of the VR user. It allows non-VR users to in-
teract with the VR environment through multiple perspectives. On 
the non-VR user’s end, WebTransceiVR runs on modern mobile 
and desktop web browsers, without the need for installation of 

any additional software. On the VR user’s end, showcasing and 
sharing a VR application experience requires them to simply im-
port a Unity package. We introduce a three-tiered system: one VR 
user, one or multiple non-VR “co-hosts” each with asymmetric col-
laboration tools individually interacting with the scene, and an 
arbitrary number of non-VR “spectators” each of whom can switch 
between the diferent camera perspectives of connected co-hosts. 
Our goal is to use WebTransceiVR to enable and study asymmetric 
communication at scale. Specifcally, we want to (i) enable multiple 
remote external users to take diferent perspectives of a VR user’s 
immersive environment and (ii) allow a subset of them (“co-hosts”) 
to provide input through a set of interactive tools. 

2 RELATED WORK 
There are three domains of related research to WebTransceiVR: 
Sharing of VR experience in asymmetric settings; Use of WebRTC 
for VR networking and consideration of content streaming in XR. 

2.1 Sharing VR Experience in Asymmetric 
Communication 

Asymmetric communication between VR and non-VR users has 
been previously studied in diferent contexts. One category is col-
laborative games between VR and PC players who work together 
to achieve a shared goal [9, 20, 25, 31]. The asymmetry is derived 
from the game design, which provides diferent visual represen-
tations and perspectives in order to create motivations for users 
to collaborate [25]. Another aspect of asymmetry comes from the 
diference in interactions possible in these mediums [27]. 

Other research explores how to best share the view of a VR 
user with the external user. Ishii et al. [10] developed a CAVE-
based visualization method that shares the VR experience with 
bystanders using translucent screens. MagicTorch [11] is another 
system that connects a VR user, an AR user, a tablet user, and the 
physical space. Users can have verbal communication in the co-
located mode and gestures in the online mode. In OmniGlobeVR 
[12], the frst-person view of the VR user is projected on a globe, 
in order for external collaborators to view the 360-degree video. 
Similarly, ShareVR [7] projects the VR scene elements on the ground, 
allowing non-HMD users to interact with the VR user in the same 
physical space. In contrast, TransceiVR [28] takes an application-
agnostic approach, utilizing VR platform APIs to share the VR scene 
and provide asymmetric collaborative features without source code 
access. DreamStream [29] also takes a similar approach where it 
allows a spectator to view a 3D reconstruction of a VR scene. All 
these works require additional custom hardware devices or software 
on the viewer’s end. However, WebTransceiVR uses web-based 
interfaces to make communication cross-platform and scalable, 
requiring minimal setup and no additional software for access. Our 
work also contributes to the study of sharing VR experience to the 
outside user by giving the external user control over the camera. 

In addition, with the development of remote work during the 
pandemic, apps that enable multi-platform collaboration emerged 
in the commercial feld, including Horizon Workrooms [4], Mozilla 
Hubs [15], and Spatial [24]. All of them support users to join via VR 
or web browser, which provides an environment for asymmetric 
VR interaction in groups. These social web-based applications are 
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Figure 2: Three-tiered interaction system with VR host, non-VR co-hosts, and spectators 

primarily for users meet in and explore virtual areas. However, our 
system is not focused on a particular type of application and can 
be applied to any application (education, industrial, or training) 
through the form of a toolkit. Compared to other platforms, the 
uniqueness of our work is that we compile it as a Unity package 
so that it can be integrated with any Unity-based application. This 
allows the content creator to use this system in diferent contexts 
and have more freedom in world-building. Unity is commonly used 
in VR development, and having our toolkit support Unity will allow 
for our system to be used widely. While our toolkit is written for 
Unity, we note that, with additional engineering, asymmetric inter-
actions proposed in our work can be extended to other technology 
stacks. We use a browser to make it easier for external users to 
interact with the application without having to download anything, 
but the view for the spectator is rendered within the the VR user’s 
program. This system that can be incorporated into existing VR 
applications to facilitate communication with asymmetric users 
and spectators without the constraints of web-based rendering so-
lutions. Prior works have highlighted the advantages of such a 
streaming approach [29]. 

2.2 WebRTC and VR 
A cross-platform, robust networking solution is required to achieve 
the synchronous interactions between VR and non-VR users. We-
bRTC (Web Real-Time Communication) [6] is a real-time peer-to-
peer connection framework that has been explored in many video 
conferencing and educational scenarios. For example, USE Together 
[13] illustrates how WebRTC can be used with a star topology to 
allow multi-user collaboration on non-VR environments, where a 
central callee shares captured media to multiple callers, potentially 
from diferent platforms. Gunkel et al.’s 360-degree social VR expe-
rience [8] looks into how two VR users can share the same WebVR 
environment over WebRTC, and XRDirector [16] explores how a 
VR “actor” and an AR “camera” can interact with each other for 
flm production through WebRTC. More recently, XRStudio [17] 
combines multi-user media sharing with VR/AR support, creating 
an educational environment where students can join a VR teacher 
using extended reality (XR) devices. 

WebTransceiVR adopts a similar networking design in these 
prior works, but changes the implementation and delivery of the 
VR environment. In the examples above, most rely on the WebVR 
framework A-Frame to create the VR world, and the sharing of VR 
items is done through A-Frame network solutions, separating from 
the WebRTC data channel. This approach potentially limits the VR 
performance as WebVR is less capable in terms of graphics and inter-
actions; it also introduces possible time lag between contents shared 
by WebRTC and WebVR. We use Unity and its Render Streaming 
functionality to avoid these problems, using Unity’s full-fedged 
engine and integrated WebRTC support for better synchronous 
collaboration. Unity also allows us to increase rendering rate more 
easily compared to WebVR solutions; as pointed out by Vikberg, in-
creasing rendering rate could efciently reduce server-side latency 
for a WebRTC-based cloud XR system [30]. 

2.3 Network Streaming Considerations and 
Limitations 

Optimizing the client/server communication channel as well as 
minimizing latency where possible are important goals for Web-
TransceiVR. Beginning with the limitations to connected clients 
accessing a single Unity server, Parthasarathy et al. [21] utilized a 
Unity server with which they connected a number of both physical 
and virtual clients that would move about the scene. Unsurprisingly, 
as the number of client connections increased, network throughput 
decreased and round-trip time (RTT) increased. Likewise, Pathak 
et al. [22] also observed in their WebXR application that frame 
rates decreased and latency increased signifcantly when only six 
users connected to the same server. These observations, though 
unsurprising, frame the goal of designing WebTransceiVR with op-
timizations that would maximize the number of connected clients 
while minimizing frame rate loss and latency spikes. 

One such optimization is suggested by Pathak et al. [22] where 
the streamed video resolution from the server to the clients changes 
depending on network congestion, a process the authors call Adap-
tive Resolution Scheme. WebTransceiVR benefts from this adap-
tive resolution scheme using WebRTC’s built-in congestion control, 
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Figure 3: User Interface for the web co-host and for the VR tablet 

which reduces the encoded video bitrate from the server when avail-
able network bandwidth decreases [30]. Additionally, monitoring 
the server load and adapting the video resolution to all connected 
clients when the server is overly taxed further optimizes frame 
rates and reduces latency for all client streams. 

3 DESIGN AND IMPLEMENTATION 
Our prototype aims to facilitate asymmetric collaboration and com-
munication between a VR user and multiple remotely located non-
VR users. We introduce a three-tiered system shown in Figure 2. 
WebTransceiVR allows devices to connect via two diferent operat-
ing modes over the internet to a device running a Unity scene along 
with the WebTransceiVR asset. The two modes are (1) connecting as 
a “co-host”, which provides connected devices with their own scene 
camera which they can control along with scene interaction fea-
tures, and (2) connecting as a spectator, which utilizes HTTP Live 
Streaming and Amazon Web Services (AWS) [2] backend services 
for easy scalability (to possibly over million viewers by leveraging 
AWS services). Spectator devices can only view the video streams 
rendered from scene cameras, and they have no control over the 
cameras, nor are they provided any scene interaction features. 

This two-way approach balances between the scale of partici-
pants and latency; we provide real-time, highly interactive partici-
pation for a limited number of users, as well as a more traditional 
live-streaming experience that can be accessed by potentially thou-
sands of spectators. From the VR user’s perspective, such a design 
also enables better control over the infux of inputs from other 
users, by limiting their interaction to a few “co-hosts”. 

3.1 Interaction Design through Video Player 
We designed and implemented several interaction features available 
to co-hosts (Fig. 3) in order to facilitate asymmetric communication 
within the virtual scene as seen in Fig. 4. 

3.1.1 Select Object. (Fig. 4.d) This feature allows the co-host to 
select any object that is in the Unity scene utilizing raycast func-
tionality. Clicking an object places an outline over the 3D mesh 
of the object in the scene, so that the non-VR user can draw the 

attention of a particular object to the VR user. Co-hosts can select 
and deselect multiple objects within the scene. 

3.1.2 Place Target. (Fig. 4.c) Co-hosts can place a blue target object 
in the scene which is visible to all other spectators and the VR 
user. The co-host clicks in the scene viewport to place the target 
normally to the surface selected. This is helpful to guide the VR 
user to a particular location in the scene. 

3.1.3 Scene Annotation. (Fig. 4.a) A scene annotation function 
allows for the non-VR co-host to draw an annotation over any 
part of the scene or objects, which is adjusted to be placed at the 
appropriate depth. The co-host sends the mouse coordinates to 
Unity which maps them to 3D coordinates based on the depth of 
the objects in the scene raycasted from the camera. 

3.1.4 Windowed Annotation. (Fig. 4.b) A second type of annotation 
function is a windowed annotation. Instead of rendering an anno-
tation within the scene, the windowed annotation feature allows 
the co-host to draw an annotation rendered on top of a snapshot of 
the non-VR user’s view of the scene that is only displayed on the 
VR user’s tablet, which is permanently attached to the user’s right 
controller. 

The above interactions inside browser require a tracking method 
for the mouse position over the video feed in order to navigate, 
properly select objects, place targets, and annotate the Unity scene. 
This tracking, and the processing for normalizing pixel coordinates 
over the video stream, are performed on the co-host client device 
prior to sending the coordinates to the custom interaction server 
running on the VR user’s machine which executes the action. Non-
VR co-hosts can remotely navigate the Unity scene with a free view 
camera controllable by mouse and keyboard. 

3.2 Interaction Design through VR View 
To allow better management of the virtual scene, we design ad-
ditional features for the VR user to control the positions of the 
cameras representing the connected co-hosts. The VR user can grab 
the scene cameras and move or rotate them to any position they 
desire, hence change the co-hosts’ viewpoints. This could be a very 
handy feature for tutorial purposes, where the VR user wants to 
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display static angles or perspectives of the actions they are per-
forming. We also provide the VR user with access to a virtual tablet 
(Fig. 3) that allows them to examine the cameras’ views. Using this 
tablet view, the VR user can also lock the positions of the scene 
cameras and prevent non-VR co-hosts from moving their cameras 
around, providing better control over the virtual scene. 

3.3 Network Architecture 
We design a WebRTC-based network architecture to support com-
munication between the Unity VR application and the web front, 
as shown in Fig. 5. 

Unity
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Facilitates Multi User Interaction
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Figure 5: The underlying network architecture of Web-
TransceiVR (STUN and TURN servers not shown) 

3.3.1 WebRTC and Unity Render Streaming. Devices connecting as 
co-hosts to the Unity server on the VR user’s computer establishes 
a WebRTC peer-to-peer connection with the computer through 
the Unity Render Streaming package. The peer connection is es-
tablished with help from three servers: a signaling server, a public 
STUN (Session Traversal Utilities for NAT) server that discovers IP 
addresses for devices, and a TURN (Traversal Using Relays around 
NAT) server that relays trafc when direct connection fails. A sig-
naling server, deployed on AWS, serves as the central relay server 
that handles the initiation of the peer connection. The signaling 
server will relay ofers from the server to the co-host client and 
vice versa; once ofers and answers are exchanged, two multimedia 
channels will be created for the two cameras, streaming the ren-
dered video from the VR program to the web frontend. A TURN 
server we deployed on AWS will automatically relay the streaming 
trafc if the direct peer connection becomes unstable. 

3.3.2 Custom HTTP Interaction Server and WebSocket Relay Service. 
Co-hosts are provided with an array of interaction tools with which 
they can interact or mark-up objects in the Unity scene. The actions 
performed by the co-host client using these interactive features 
are relayed to the Unity machine by sending JavaScript GET/POST 
requests to a custom interaction server running inside the Unity ap-
plication. Such a server implements a REST API, parses the requests 
from the client which includes identifying information such as the 
client’s ID along with the operation that should be performed in the 
Unity scene and any appropriate parameters necessary to perform 
the action (such as mouse cursor position). The server is also re-
sponsible for keeping track of scene cameras’ availability at a given 
time, appropriately handling clients that signal for disconnection 
from the server along with newly connecting clients requesting 
to be assigned a client ID and scene camera to control. To help 
with the complications of NAT and frewalls during connection, we 
implemented a relay service on the central signaling server utilizing 
the WebSocket protocol. This allows us to open up bidirectional 
communication through TCP connections, relaying requests and 
responses between the web client and the Unity application. 

3.3.3 Spectator Connection. Spectators connect to WebTransceiVR 
using a diferent URL than devices wishing to connect as co-hosts. 
Spectators can view the video feed being rendered from the scene 
cameras, being able to freely switch between all available cameras. 
The rendered output streams of these cameras are the frst broadcast 
from the VR user’s machine to the AWS Elemental Live service using 
FFmpeg [3, 5]. The service then bufers and transcodes the video 
streams into multiple video resolutions. Connecting spectators can 
then view those video streams from the AWS storage using HTTP 
Live Streaming (HLS), and switching video sources in the browser 
allows users to view from diferent cameras. Building the spectator 
component on the cloud allows the VR user to scale the service on 
demand, allowing a very large group of spectators. 

4 PILOT TESTING 
We carried out pilot testing using demo scenes to get early feedback 
on the interface and interaction in WebTransceiVR. We recruited 
4 pairs of users (VR user-External user) who used two Unity VR 
scenes: a maze scene and an ofce scene (Fig. 6). In the maze scene, 
the system generates a coin at a random position within it. The 
external user needs to guide the VR user to the coin, using features 
like annotation or place target. The ofce scene is more complex and 
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has various 3D models for the users to interact with. In this scene, 
the VR user and web co-host don’t have a specifc goal, but are 
encouraged to explore the environment together and communicate 
using features including annotation, select objects, etc. We used the 
two scenes to test the usability and the impact of WebTransceiVR 
on asymmetric collaboration between VR and external users. 

Compiling the responses from users testing the WebTransceiVR 
interface, we were able to formulate the following key points of 
feedback with respect to the user interface. From the web co-host 
side, there seemed to be a learning curve for the users to learn the 
UI for controlling the camera. One co-host user suggested us to 
include a simple diagram showing how to control the camera in the 
scene on the co-host side. From the VR side, a user who had basic 
VR experience reported that the difculty for completing the maze 
task is low, requiring low mental and physical demand to complete. 
Two of the four VR users reported that features like annotation 
and windowed annotations provided rich visual cues to navigate 
through the maze. We also observed that in the maze task, co-host 
users preferred to use the windowed annotation feature. Since this 
feature takes a snapshot of the non-VR user’s view, it allows them 
to move above the maze, annotate a path from a birds-eye view, 
and share to the VR user a mini-map of the maze. 

Figure 6: Unity ofce scene (left); Unity maze scene with 
coins to collect (right). 

5 DISCUSSION AND LIMITATION 
WebTransceiVR shows strong potential in addressing needs of asym-
metric remote collaboration by enabling a scalable, cross-platform 
communication interaction. So far, our prototype (i) enables asym-
metric interactions between one VR user and multiple non-VR users, 
(ii) supports a large number of spectators (possibly up to million 
spectators by leveraging AWS services) observing such interactions, 
and (iii) allows the above functions to operate remotely on stan-
dard web browser, with no additional software on the external user 
side. As mentioned earlier, this toolkit can facilitate typical asym-
metric interaction scenarios. For instance, in a learning scenario, 
the teacher, teaching assistants, and students can be the VR user, 
the web co-hosts, and the spectators respectively. Another is with 
eSports: streamers, commentators, and spectators in a VR eSport 
game streaming session. In this setting, co-host cameras can be 
controlled by commentators from a freely moving perspective or 
an over-the-shoulder shot; thousands of spectators can view the 
eSport session from these perspectives. 

A major limitation to our prototype is the number of co-hosts; 
currently, only two to three co-hosts are allowed. This is because of 
GPU accelerated video encoding, such as Nvidia NVENC is limited 
to only two concurrent hardware encoded streams[19] from the VR 

user’s PC. While co-hosts have low-latency of interaction (∼50ms), 
the spectator mode has a much higher latency (∼20 seconds). This 
is the current industry standard for scalable streaming, and is due 
to real-time video bufering and transcoding amongst other process 
that happens on AWS servers. On the interaction side, the VR user 
currently has little control over the annotations and targets placed 
by the co-hosts; this can lead to spamming and poor navigation 
inside the VR scene. 

6 CONCLUSION AND FUTURE WORK 
In this paper, we propose WebTransceiVR to address issues with 
asymmetric communication between a VR user and remotely lo-
cated non-VR users. We explored a multi-user avenue of solving 
this problem and implemented a three-tiered system of one VR host, 
two non-VR co-hosts, and spectators. We believe that this system 
can help with VR collaboration in a variety of applications such as 
remote learning, live streaming, and VR conferencing. 

Our pilot testing points to various avenues for future work. In 
the future, we plan to conduct user studies and understand the 
efectiveness of our current features in facilitating asymmetrical 
collaboration and communication. This includes testing the task 
completion time between pairs using WebTransceiVR and pairs 
under other conditions such as mirrored VR view. 

The future design iterations of WebTransceiVR include enhanc-
ing co-hosts’ awareness of each other and the VR user’s awareness 
of diferent non-VR users. In our current version, the position of 
two co-hosts are both visualized with a camera model, and the 
annotations of co-hosts are shown in the same color. This means 
there are no visual cues for the VR user to distinguish between 
the two co-hosts. Features like diferent colors of annotations or 
viewing only one co-host’s annotation or targets can be helpful 
in fltering the information. We will iterate on the current design 
of the tablet held by the VR user to address this issue. Besides, 
since each co-host can not access the view of another co-host, there 
can be features to further support the communication between 
co-hosts, such as utilizing spatial audio to enhance the co-presence 
and spatial awareness. 

At this stage, the spectators are only passive viewers, but in 
the future we can design more features to encourage spectator 
participation. Meanwhile, it is possible for co-hosts to visualize and 
moderate interactions by a large number of spectators. For instance, 
one can have spatial polls where spectators can select parts of 
a scene where an action is to be executed by the VR user. Such 
interactions are useful and remain unexplored in prior literature. 
We hope to study these using WebTransceiVR in the future. 
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