
WebTransceiVR
Asymmetrical Communication Between Multiple VR and Non-VR Users Online

Haohua Lyu∗
University of California,

Cyrus Vachha∗
University of California,

Qianyi Chen∗
University of California,

Odysseus Pyrinis
University of California,

Berkeley Berkeley Berkeley Berkeley
Berkeley, CA, USA Berkeley, CA, USA Berkeley, CA, USA Berkeley, CA, USA

haohua@berkeley.edu cvachha@berkeley.edu qianyi.chen@berkeley.edu odysseus.pyrinis@berkeley.edu

Avery Liou Balasaravanan Bjöern Hartmann
University of California, Thoravi Kumaravel University of California,

Berkeley University of California, Berkeley
Berkeley, CA, USA Berkeley Berkeley, CA, USA

liou.avery@berkeley.edu Berkeley, CA, USA bjoern@eecs.berkeley.edu

bala@eecs.berkeley.edu

VR user view

VR user

Web cohost 2

Web cohost 1

Spatial location of VR player and two web cohosts

Web cohost 2 view

Web cohost 1 view

Spectators: switch view between two web cohosts

Figure 1: Asymmetric remote interaction using WebTransceiVR; two web co-hosts (left and right) are observing the VR user
(middle) in the virtual environment through web browsers on laptops and mobiles. Spectators can view from the cameras of
the two web co-hosts.

ABSTRACT
Increasing adoption of Virtual Reality (VR) systems in various felds
has created the need for collaborative work and communication. To-
day, asymmetric communication between a VR user and other non-
VR users remains a challenge. The VR user cannot see the external
non-VR users, and the non-VR users are restricted to the VR user’s
∗The authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution International
4.0 License.

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9156-6/22/04.
https://doi.org/10.1145/3491101.3519816

frst-person view. To address this, we propose WebTransceiVR, an
asymmetric collaboration toolkit which when integrated into a VR
application, allows multiple non-VR users to share the virtual space
of the VR user. It allows external users to enter and be part of the VR
application’s space through standard web browsers on mobile and
computers. These external users can explore and interact with the
other users, the VR scene as well as the VR user. WebTransceiVR
also includes a cloud-based streaming solution that enables many
passive spectators to view the scene through any of the active cam-
eras. We conduct informal user testing to gain additional insights
for future work.

CCS CONCEPTS
• Human-centered computing → Virtual reality; Collabora-
tive interaction.

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3491101.3519816
mailto:bala@eecs.berkeley.edu
mailto:bjoern@eecs.berkeley.edu
mailto:liou.avery@berkeley.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3491101.3519816&domain=pdf&date_stamp=2022-04-28

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Haohua Lyu, Cyrus Vachha, Qianyi Chen, et al.

KEYWORDS
Virtual Reality, Asymmetric Communication

ACM Reference Format:
Haohua Lyu, Cyrus Vachha, Qianyi Chen, Odysseus Pyrinis, Avery Liou, Bal-
asaravanan Thoravi Kumaravel, and Bjöern Hartmann. 2022. WebTransceiVR:
Asymmetrical Communication Between Multiple VR and Non-VR Users
Online. In CHI Conference on Human Factors in Computing Systems Extended
Abstracts (CHI ’22 Extended Abstracts), April 29-May 5, 2022, New Orleans, LA,
USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3491101.
3519816

1 INTRODUCTION
Virtual reality (VR) is an increasingly popular medium that is being
used for diferent applications ranging from art, design, medicine,
entertainment, amongst others. Like with other software, a user
in VR may have to interact and collaborate with others while they
perform a task. However, these users may not be using a VR headset.
There is a growing interest for such an asymmetric interaction
between users who operate across VR and non-VR platforms [14, 17,
28]. These interactions occur in numerous domains. In fact, today
during the development of a VR application, it is common to show
and get feedback from remotely located collaborators who may not
have access to VR headsets. A powerful use case of VR is education.
It may be enticing for an instructor to use VR to teach concepts
that involve complex 3D information. However, many students lack
access to VR devices, especially if the instruction is remote. Non-VR
students have limited ways to interact with the instructor due to
the asymmetry of the display and input abilities between them.
This introduces challenges for efective communication. Similar
issues occur in VR eSports, where event organizers face difculty
in making the non-VR spectator experience more engaging. In
contrast to streaming, one way to solve these issues is to gravitate
towards applications that have a counterpart application capable
of multi-player style non-VR spectator support. This would require
each spectator to download a separate app that contains all the
original graphical assets. Such an application can be heavy and may
pose specifc demands to be met by the spectator’s computers.

We seek inspiration from prior work such as TransceiVR [28],
ShareVR [7], and XRStudio [17]. Both ShareVR and TransceiVR
support asymmetric communication to allow a VR user and a non-
VR user to collaborate, either in the same physical space [7] or
using the same computer [28]. However, these tools were designed
primarily for dyadic interactions and did not scale with viewers.
In situations like remote learning, VR live streaming, the ability to
support more than a couple of views as well as a large number of
passive spectators is key. XRStudio [17] achieves the remote multi-
user sharing of VR educational content. Vreal [32] allows multiple
spectators to be within the scene of a VR application. However, these
approaches still require non-VR users to have dedicated applications
installed as well as access to a VR/AR headset.

To address these concerns, we propose WebTransceiVR, an asym-
metric collaboration toolkit that brings the non-VR users into the
shared virtual space of the VR user. It allows non-VR users to in-
teract with the VR environment through multiple perspectives. On
the non-VR user’s end, WebTransceiVR runs on modern mobile
and desktop web browsers, without the need for installation of

any additional software. On the VR user’s end, showcasing and
sharing a VR application experience requires them to simply im-
port a Unity package. We introduce a three-tiered system: one VR
user, one or multiple non-VR “co-hosts” each with asymmetric col-
laboration tools individually interacting with the scene, and an
arbitrary number of non-VR “spectators” each of whom can switch
between the diferent camera perspectives of connected co-hosts.
Our goal is to use WebTransceiVR to enable and study asymmetric
communication at scale. Specifcally, we want to (i) enable multiple
remote external users to take diferent perspectives of a VR user’s
immersive environment and (ii) allow a subset of them (“co-hosts”)
to provide input through a set of interactive tools.

2 RELATED WORK
There are three domains of related research to WebTransceiVR:
Sharing of VR experience in asymmetric settings; Use of WebRTC
for VR networking and consideration of content streaming in XR.

2.1 Sharing VR Experience in Asymmetric
Communication

Asymmetric communication between VR and non-VR users has
been previously studied in diferent contexts. One category is col-
laborative games between VR and PC players who work together
to achieve a shared goal [9, 20, 25, 31]. The asymmetry is derived
from the game design, which provides diferent visual represen-
tations and perspectives in order to create motivations for users
to collaborate [25]. Another aspect of asymmetry comes from the
diference in interactions possible in these mediums [27].

Other research explores how to best share the view of a VR
user with the external user. Ishii et al. [10] developed a CAVE-
based visualization method that shares the VR experience with
bystanders using translucent screens. MagicTorch [11] is another
system that connects a VR user, an AR user, a tablet user, and the
physical space. Users can have verbal communication in the co-
located mode and gestures in the online mode. In OmniGlobeVR
[12], the frst-person view of the VR user is projected on a globe,
in order for external collaborators to view the 360-degree video.
Similarly, ShareVR [7] projects the VR scene elements on the ground,
allowing non-HMD users to interact with the VR user in the same
physical space. In contrast, TransceiVR [28] takes an application-
agnostic approach, utilizing VR platform APIs to share the VR scene
and provide asymmetric collaborative features without source code
access. DreamStream [29] also takes a similar approach where it
allows a spectator to view a 3D reconstruction of a VR scene. All
these works require additional custom hardware devices or software
on the viewer’s end. However, WebTransceiVR uses web-based
interfaces to make communication cross-platform and scalable,
requiring minimal setup and no additional software for access. Our
work also contributes to the study of sharing VR experience to the
outside user by giving the external user control over the camera.

In addition, with the development of remote work during the
pandemic, apps that enable multi-platform collaboration emerged
in the commercial feld, including Horizon Workrooms [4], Mozilla
Hubs [15], and Spatial [24]. All of them support users to join via VR
or web browser, which provides an environment for asymmetric
VR interaction in groups. These social web-based applications are

https://doi.org/10.1145/3491101.3519816
https://doi.org/10.1145/3491101.3519816

WebTransceiVR CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

System ArchitectureSystem Design

Web cohost 2Web cohost 1

Spectators

VR User VR View

Control VR
camera

Control

camera 1

Control

camera 2

No control

External view 1
 External view 2

Switch

view

WebTransceiVR HTTP Live
Streaming

(HLS)

SpectatorsVR User

WebRTC

Web Cohost 2Web Cohost 1

Unity Server

2~4 users

Latency: ~50ms*

*20~500ms depends on the geographical
distances between users

>1000 users

Latency: ～20s

Figure 2: Three-tiered interaction system with VR host, non-VR co-hosts, and spectators

primarily for users meet in and explore virtual areas. However, our
system is not focused on a particular type of application and can
be applied to any application (education, industrial, or training)
through the form of a toolkit. Compared to other platforms, the
uniqueness of our work is that we compile it as a Unity package
so that it can be integrated with any Unity-based application. This
allows the content creator to use this system in diferent contexts
and have more freedom in world-building. Unity is commonly used
in VR development, and having our toolkit support Unity will allow
for our system to be used widely. While our toolkit is written for
Unity, we note that, with additional engineering, asymmetric inter-
actions proposed in our work can be extended to other technology
stacks. We use a browser to make it easier for external users to
interact with the application without having to download anything,
but the view for the spectator is rendered within the the VR user’s
program. This system that can be incorporated into existing VR
applications to facilitate communication with asymmetric users
and spectators without the constraints of web-based rendering so-
lutions. Prior works have highlighted the advantages of such a
streaming approach [29].

2.2 WebRTC and VR
A cross-platform, robust networking solution is required to achieve
the synchronous interactions between VR and non-VR users. We-
bRTC (Web Real-Time Communication) [6] is a real-time peer-to-
peer connection framework that has been explored in many video
conferencing and educational scenarios. For example, USE Together
[13] illustrates how WebRTC can be used with a star topology to
allow multi-user collaboration on non-VR environments, where a
central callee shares captured media to multiple callers, potentially
from diferent platforms. Gunkel et al.’s 360-degree social VR expe-
rience [8] looks into how two VR users can share the same WebVR
environment over WebRTC, and XRDirector [16] explores how a
VR “actor” and an AR “camera” can interact with each other for
flm production through WebRTC. More recently, XRStudio [17]
combines multi-user media sharing with VR/AR support, creating
an educational environment where students can join a VR teacher
using extended reality (XR) devices.

WebTransceiVR adopts a similar networking design in these
prior works, but changes the implementation and delivery of the
VR environment. In the examples above, most rely on the WebVR
framework A-Frame to create the VR world, and the sharing of VR
items is done through A-Frame network solutions, separating from
the WebRTC data channel. This approach potentially limits the VR
performance as WebVR is less capable in terms of graphics and inter-
actions; it also introduces possible time lag between contents shared
by WebRTC and WebVR. We use Unity and its Render Streaming
functionality to avoid these problems, using Unity’s full-fedged
engine and integrated WebRTC support for better synchronous
collaboration. Unity also allows us to increase rendering rate more
easily compared to WebVR solutions; as pointed out by Vikberg, in-
creasing rendering rate could efciently reduce server-side latency
for a WebRTC-based cloud XR system [30].

2.3 Network Streaming Considerations and
Limitations

Optimizing the client/server communication channel as well as
minimizing latency where possible are important goals for Web-
TransceiVR. Beginning with the limitations to connected clients
accessing a single Unity server, Parthasarathy et al. [21] utilized a
Unity server with which they connected a number of both physical
and virtual clients that would move about the scene. Unsurprisingly,
as the number of client connections increased, network throughput
decreased and round-trip time (RTT) increased. Likewise, Pathak
et al. [22] also observed in their WebXR application that frame
rates decreased and latency increased signifcantly when only six
users connected to the same server. These observations, though
unsurprising, frame the goal of designing WebTransceiVR with op-
timizations that would maximize the number of connected clients
while minimizing frame rate loss and latency spikes.

One such optimization is suggested by Pathak et al. [22] where
the streamed video resolution from the server to the clients changes
depending on network congestion, a process the authors call Adap-
tive Resolution Scheme. WebTransceiVR benefts from this adap-
tive resolution scheme using WebRTC’s built-in congestion control,

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Haohua Lyu, Cyrus Vachha, Qianyi Chen, et al.

Connected as Client: 0

Switch Video Select Object Annotate Annotate Windowed Place Target Remove Windowed Annotation Remove All Annotations Remove All Targets

Currently Viewing: Client 0

Lock Camera 1

Lock Camera 2

Unlock Camera 1

Unlock Camera 2

Toolbar

Client ID Viewing Mode

Camera View

Figure 3: User Interface for the web co-host and for the VR tablet

which reduces the encoded video bitrate from the server when avail-
able network bandwidth decreases [30]. Additionally, monitoring
the server load and adapting the video resolution to all connected
clients when the server is overly taxed further optimizes frame
rates and reduces latency for all client streams.

3 DESIGN AND IMPLEMENTATION
Our prototype aims to facilitate asymmetric collaboration and com-
munication between a VR user and multiple remotely located non-
VR users. We introduce a three-tiered system shown in Figure 2.
WebTransceiVR allows devices to connect via two diferent operat-
ing modes over the internet to a device running a Unity scene along
with the WebTransceiVR asset. The two modes are (1) connecting as
a “co-host”, which provides connected devices with their own scene
camera which they can control along with scene interaction fea-
tures, and (2) connecting as a spectator, which utilizes HTTP Live
Streaming and Amazon Web Services (AWS) [2] backend services
for easy scalability (to possibly over million viewers by leveraging
AWS services). Spectator devices can only view the video streams
rendered from scene cameras, and they have no control over the
cameras, nor are they provided any scene interaction features.

This two-way approach balances between the scale of partici-
pants and latency; we provide real-time, highly interactive partici-
pation for a limited number of users, as well as a more traditional
live-streaming experience that can be accessed by potentially thou-
sands of spectators. From the VR user’s perspective, such a design
also enables better control over the infux of inputs from other
users, by limiting their interaction to a few “co-hosts”.

3.1 Interaction Design through Video Player
We designed and implemented several interaction features available
to co-hosts (Fig. 3) in order to facilitate asymmetric communication
within the virtual scene as seen in Fig. 4.

3.1.1 Select Object. (Fig. 4.d) This feature allows the co-host to
select any object that is in the Unity scene utilizing raycast func-
tionality. Clicking an object places an outline over the 3D mesh
of the object in the scene, so that the non-VR user can draw the

attention of a particular object to the VR user. Co-hosts can select
and deselect multiple objects within the scene.

3.1.2 Place Target. (Fig. 4.c) Co-hosts can place a blue target object
in the scene which is visible to all other spectators and the VR
user. The co-host clicks in the scene viewport to place the target
normally to the surface selected. This is helpful to guide the VR
user to a particular location in the scene.

3.1.3 Scene Annotation. (Fig. 4.a) A scene annotation function
allows for the non-VR co-host to draw an annotation over any
part of the scene or objects, which is adjusted to be placed at the
appropriate depth. The co-host sends the mouse coordinates to
Unity which maps them to 3D coordinates based on the depth of
the objects in the scene raycasted from the camera.

3.1.4 Windowed Annotation. (Fig. 4.b) A second type of annotation
function is a windowed annotation. Instead of rendering an anno-
tation within the scene, the windowed annotation feature allows
the co-host to draw an annotation rendered on top of a snapshot of
the non-VR user’s view of the scene that is only displayed on the
VR user’s tablet, which is permanently attached to the user’s right
controller.

The above interactions inside browser require a tracking method
for the mouse position over the video feed in order to navigate,
properly select objects, place targets, and annotate the Unity scene.
This tracking, and the processing for normalizing pixel coordinates
over the video stream, are performed on the co-host client device
prior to sending the coordinates to the custom interaction server
running on the VR user’s machine which executes the action. Non-
VR co-hosts can remotely navigate the Unity scene with a free view
camera controllable by mouse and keyboard.

3.2 Interaction Design through VR View
To allow better management of the virtual scene, we design ad-
ditional features for the VR user to control the positions of the
cameras representing the connected co-hosts. The VR user can grab
the scene cameras and move or rotate them to any position they
desire, hence change the co-hosts’ viewpoints. This could be a very
handy feature for tutorial purposes, where the VR user wants to

WebTransceiVR CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

Annotation

a. c. d.b.

SelectionWindowed Annotation Target

Figure 4: Interactive features for the co-host

display static angles or perspectives of the actions they are per-
forming. We also provide the VR user with access to a virtual tablet
(Fig. 3) that allows them to examine the cameras’ views. Using this
tablet view, the VR user can also lock the positions of the scene
cameras and prevent non-VR co-hosts from moving their cameras
around, providing better control over the virtual scene.

3.3 Network Architecture
We design a WebRTC-based network architecture to support com-
munication between the Unity VR application and the web front,
as shown in Fig. 5.

Unity

Custom Interaction Server

Receives Web Client Input
Calls Unity C# Functions

Facilitates Multi User Interaction

WebRTC

Network

3D Environment
non-VR Client Cameras

Unity Render Streaming

Web Client

Co-Host

VR User

Asymmetric Interaction
Tools

Client Camera Feeds

Client Positions

Function Calls
 for Tool Input

Client Tools Input

Video Stream
of Co-host Cameras
through Cloud

Spectator

Client Management
Connection

HTTPS Signaling

Cloud Service (AWS)

Figure 5: The underlying network architecture of Web-
TransceiVR (STUN and TURN servers not shown)

3.3.1 WebRTC and Unity Render Streaming. Devices connecting as
co-hosts to the Unity server on the VR user’s computer establishes
a WebRTC peer-to-peer connection with the computer through
the Unity Render Streaming package. The peer connection is es-
tablished with help from three servers: a signaling server, a public
STUN (Session Traversal Utilities for NAT) server that discovers IP
addresses for devices, and a TURN (Traversal Using Relays around
NAT) server that relays trafc when direct connection fails. A sig-
naling server, deployed on AWS, serves as the central relay server
that handles the initiation of the peer connection. The signaling
server will relay ofers from the server to the co-host client and
vice versa; once ofers and answers are exchanged, two multimedia
channels will be created for the two cameras, streaming the ren-
dered video from the VR program to the web frontend. A TURN
server we deployed on AWS will automatically relay the streaming
trafc if the direct peer connection becomes unstable.

3.3.2 Custom HTTP Interaction Server and WebSocket Relay Service.
Co-hosts are provided with an array of interaction tools with which
they can interact or mark-up objects in the Unity scene. The actions
performed by the co-host client using these interactive features
are relayed to the Unity machine by sending JavaScript GET/POST
requests to a custom interaction server running inside the Unity ap-
plication. Such a server implements a REST API, parses the requests
from the client which includes identifying information such as the
client’s ID along with the operation that should be performed in the
Unity scene and any appropriate parameters necessary to perform
the action (such as mouse cursor position). The server is also re-
sponsible for keeping track of scene cameras’ availability at a given
time, appropriately handling clients that signal for disconnection
from the server along with newly connecting clients requesting
to be assigned a client ID and scene camera to control. To help
with the complications of NAT and frewalls during connection, we
implemented a relay service on the central signaling server utilizing
the WebSocket protocol. This allows us to open up bidirectional
communication through TCP connections, relaying requests and
responses between the web client and the Unity application.

3.3.3 Spectator Connection. Spectators connect to WebTransceiVR
using a diferent URL than devices wishing to connect as co-hosts.
Spectators can view the video feed being rendered from the scene
cameras, being able to freely switch between all available cameras.
The rendered output streams of these cameras are the frst broadcast
from the VR user’s machine to the AWS Elemental Live service using
FFmpeg [3, 5]. The service then bufers and transcodes the video
streams into multiple video resolutions. Connecting spectators can
then view those video streams from the AWS storage using HTTP
Live Streaming (HLS), and switching video sources in the browser
allows users to view from diferent cameras. Building the spectator
component on the cloud allows the VR user to scale the service on
demand, allowing a very large group of spectators.

4 PILOT TESTING
We carried out pilot testing using demo scenes to get early feedback
on the interface and interaction in WebTransceiVR. We recruited
4 pairs of users (VR user-External user) who used two Unity VR
scenes: a maze scene and an ofce scene (Fig. 6). In the maze scene,
the system generates a coin at a random position within it. The
external user needs to guide the VR user to the coin, using features
like annotation or place target. The ofce scene is more complex and

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA Haohua Lyu, Cyrus Vachha, Qianyi Chen, et al.

has various 3D models for the users to interact with. In this scene,
the VR user and web co-host don’t have a specifc goal, but are
encouraged to explore the environment together and communicate
using features including annotation, select objects, etc. We used the
two scenes to test the usability and the impact of WebTransceiVR
on asymmetric collaboration between VR and external users.

Compiling the responses from users testing the WebTransceiVR
interface, we were able to formulate the following key points of
feedback with respect to the user interface. From the web co-host
side, there seemed to be a learning curve for the users to learn the
UI for controlling the camera. One co-host user suggested us to
include a simple diagram showing how to control the camera in the
scene on the co-host side. From the VR side, a user who had basic
VR experience reported that the difculty for completing the maze
task is low, requiring low mental and physical demand to complete.
Two of the four VR users reported that features like annotation
and windowed annotations provided rich visual cues to navigate
through the maze. We also observed that in the maze task, co-host
users preferred to use the windowed annotation feature. Since this
feature takes a snapshot of the non-VR user’s view, it allows them
to move above the maze, annotate a path from a birds-eye view,
and share to the VR user a mini-map of the maze.

Figure 6: Unity ofce scene (left); Unity maze scene with
coins to collect (right).

5 DISCUSSION AND LIMITATION
WebTransceiVR shows strong potential in addressing needs of asym-
metric remote collaboration by enabling a scalable, cross-platform
communication interaction. So far, our prototype (i) enables asym-
metric interactions between one VR user and multiple non-VR users,
(ii) supports a large number of spectators (possibly up to million
spectators by leveraging AWS services) observing such interactions,
and (iii) allows the above functions to operate remotely on stan-
dard web browser, with no additional software on the external user
side. As mentioned earlier, this toolkit can facilitate typical asym-
metric interaction scenarios. For instance, in a learning scenario,
the teacher, teaching assistants, and students can be the VR user,
the web co-hosts, and the spectators respectively. Another is with
eSports: streamers, commentators, and spectators in a VR eSport
game streaming session. In this setting, co-host cameras can be
controlled by commentators from a freely moving perspective or
an over-the-shoulder shot; thousands of spectators can view the
eSport session from these perspectives.

A major limitation to our prototype is the number of co-hosts;
currently, only two to three co-hosts are allowed. This is because of
GPU accelerated video encoding, such as Nvidia NVENC is limited
to only two concurrent hardware encoded streams[19] from the VR

user’s PC. While co-hosts have low-latency of interaction (∼50ms),
the spectator mode has a much higher latency (∼20 seconds). This
is the current industry standard for scalable streaming, and is due
to real-time video bufering and transcoding amongst other process
that happens on AWS servers. On the interaction side, the VR user
currently has little control over the annotations and targets placed
by the co-hosts; this can lead to spamming and poor navigation
inside the VR scene.

6 CONCLUSION AND FUTURE WORK
In this paper, we propose WebTransceiVR to address issues with
asymmetric communication between a VR user and remotely lo-
cated non-VR users. We explored a multi-user avenue of solving
this problem and implemented a three-tiered system of one VR host,
two non-VR co-hosts, and spectators. We believe that this system
can help with VR collaboration in a variety of applications such as
remote learning, live streaming, and VR conferencing.

Our pilot testing points to various avenues for future work. In
the future, we plan to conduct user studies and understand the
efectiveness of our current features in facilitating asymmetrical
collaboration and communication. This includes testing the task
completion time between pairs using WebTransceiVR and pairs
under other conditions such as mirrored VR view.

The future design iterations of WebTransceiVR include enhanc-
ing co-hosts’ awareness of each other and the VR user’s awareness
of diferent non-VR users. In our current version, the position of
two co-hosts are both visualized with a camera model, and the
annotations of co-hosts are shown in the same color. This means
there are no visual cues for the VR user to distinguish between
the two co-hosts. Features like diferent colors of annotations or
viewing only one co-host’s annotation or targets can be helpful
in fltering the information. We will iterate on the current design
of the tablet held by the VR user to address this issue. Besides,
since each co-host can not access the view of another co-host, there
can be features to further support the communication between
co-hosts, such as utilizing spatial audio to enhance the co-presence
and spatial awareness.

At this stage, the spectators are only passive viewers, but in
the future we can design more features to encourage spectator
participation. Meanwhile, it is possible for co-hosts to visualize and
moderate interactions by a large number of spectators. For instance,
one can have spatial polls where spectators can select parts of
a scene where an action is to be executed by the VR user. Such
interactions are useful and remain unexplored in prior literature.
We hope to study these using WebTransceiVR in the future.

ACKNOWLEDGMENTS
We thank pilot test participants for their time and feedback. The
ofce model used in Fig. 1, 3, 4, 6 is sourced from “Low Poly Ofce
Pack: Characters & Props” by Polygonal Mind [23] (Standard Unity
Asset Store EULA license). The camera model used in Fig. 1 is
sourced from “Movie Camera” by Adobe Inc. [1] (Adobe Education
License). The maze model used in Fig. 3, 6 is sourced from “Maze
Generator” by styanton [26] (Standard Unity Asset Store EULA
license). The outline model used in Fig. 4 is sourced from “Quick

WebTransceiVR

Outline” by Chris Nolet [18] (Standard Unity Asset Store EULA
license).

REFERENCES
[1] Adobe Inc. 2022. Movie Camera. https://substance3d.adobe.com/assets/allassets/

eb9281d40787949b272ee449014edba1481a7c59
[2] Amazon Web Services. 2022. Amazon Web Services. https://aws.amazon.com/
[3] Amazon Web Services. 2022. AWS Elemental Live. https://aws.amazon.com/

elemental-live/
[4] Facebook Technologies. 2021. Horizon Workrooms. https://www.oculus.com/

workrooms/
[5] FFmpeg Developers. 2022. FFmpeg. https://www.fmpeg.org/
[6] Google Developers. 2022. WebRTC. https://webrtc.org/
[7] Jan Gugenheimer, Evgeny Stemasov, Julian Frommel, and Enrico Rukzio. 2017.

ShareVR: Enabling Co-Located Experiences for Virtual Reality between HMD and
Non-HMD Users. In Proceedings of the 2017 CHI Conference on Human Factors in
Computing Systems (Denver, Colorado, USA) (CHI ’17). Association for Computing
Machinery, New York, NY, USA, 4021–4033. https://doi.org/10.1145/3025453.
3025683

[8] Simon Gunkel, Martin Prins, Hans Stokking, and Omar Niamut. 2017. WebVR
meets WebRTC: Towards 360-degree social VR experiences. In 2017 IEEE Virtual
Reality (VR). Institute of Electrical and Electronics Engineers, Los Angeles, CA,
USA, 457–458. https://doi.org/10.1109/VR.2017.7892377

[9] Ionized Studios. 2017. IronWolf VR. https://www.ionized.tech/
[10] Akira Ishii, Masaya Tsuruta, Ippei Suzuki, Shuta Nakamae, Junichi Suzuki, and

Yoichi Ochiai. 2019. Let Your World Open: CAVE-Based Visualization Methods of
Public Virtual Reality towards a Shareable VR Experience. In Proceedings of the
10th Augmented Human International Conference 2019 (Reims, France) (AH2019).
Association for Computing Machinery, New York, NY, USA, Article 33, 8 pages.
https://doi.org/10.1145/3311823.3311860

[11] Jiabao Li, Honghao Deng, and Panagiotis Michalatos. 2017. MagicTorch: A
Context-Aware Projection System for Asymmetrical VR Games. In Extended
Abstracts Publication of the Annual Symposium on Computer-Human Interac-
tion in Play (Amsterdam, The Netherlands) (CHI PLAY ’17 Extended Abstracts).
Association for Computing Machinery, New York, NY, USA, 431–436. https:
//doi.org/10.1145/3130859.3131341

[12] Zhengqing Li, Theophilus Teo, Liwei Chan, Gun Lee, Matt Adcock, Mark
Billinghurst, and Hideki Koike. 2020. OmniGlobeVR: A Collaborative 360-
Degree Communication System for VR. In Proceedings of the 2020 ACM De-
signing Interactive Systems Conference (Eindhoven, Netherlands) (DIS ’20). As-
sociation for Computing Machinery, New York, NY, USA, 615–625. https:
//doi.org/10.1145/3357236.3395429

[13] Laurent Lucas, Hervé Deleau, Benjamin Battin, and Julien Lehuraux. 2017. USE To-
gether, a WebRTC-Based Solution for Multi-user Presence Desktop. In Cooperative
Design, Visualization, and Engineering, Yuhua Luo (Ed.). Springer International
Publishing, Cham, 228–235.

[14] Stefan Marks, David White, and Manpreet Singh. 2017. Getting up Your Nose:
A Virtual Reality Education Tool for Nasal Cavity Anatomy. In SIGGRAPH Asia
2017 Symposium on Education (Bangkok, Thailand) (SA ’17). Association for
Computing Machinery, New York, NY, USA, Article 1, 7 pages. https://doi.org/
10.1145/3134368.3139218

[15] Mozilla. 2021. Mozilla Hubs. https://hubs.mozilla.com/

CHI ’22 Extended Abstracts, April 29-May 5, 2022, New Orleans, LA, USA

[16] Michael Nebeling, Katy Lewis, Yu-Cheng Chang, Lihan Zhu, Michelle Chung,
Piaoyang Wang, and Janet Nebeling. 2020. XRDirector: A Role-Based Collab-
orative Immersive Authoring System. In Proceedings of the 2020 CHI Confer-
ence on Human Factors in Computing Systems (Honolulu, HI, USA) (CHI ’20).
Association for Computing Machinery, New York, NY, USA, 1–12. https:
//doi.org/10.1145/3313831.3376637

[17] Michael Nebeling, Shwetha Rajaram, Liwei Wu, Yifei Cheng, and Jaylin Her-
skovitz. 2021. XRStudio: A Virtual Production and Live Streaming System for
Immersive Instructional Experiences. In Proceedings of the 2021 CHI Conference
on Human Factors in Computing Systems (Yokohama, Japan) (CHI ’21). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 107, 12 pages.
https://doi.org/10.1145/3411764.3445323

[18] Chris Nolet. 2018. Quick Outline. https://assetstore.unity.com/packages/tools/
particles-efects/quick-outline-115488

[19] Nvidia Developers. 2022. Video Encode and Decode GPU Support Matrix. https:
//developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new

[20] Odd Raven Studios. 2018. Carly and the Reaperman - Escape from the Underworld.
https://www.oddravenstudios.com/

[21] Venkatakrishnan Parthasarathy, Anderson Augusto Simiscuka, Noel O’Connor,
and Gabriel-Miro Muntean. 2020. Performance Evaluation of a Multi-User Virtual
Reality Platform. In 2020 International Wireless Communications and Mobile Com-
puting (IWCMC). Institute of Electrical and Electronics Engineers, St. Raphael
Resort, Limassol, Cyprus, 934–939. https://doi.org/10.1109/IWCMC48107.2020.
9148390

[22] Rishabh Pathak, Anderson Augusto Simiscuka, and Gabriel-Miro Muntean. 2021.
An Adaptive Resolution Scheme for Performance Enhancement of a Web-based
Multi-User VR Application. In 2021 IEEE International Symposium on Broadband
Multimedia Systems and Broadcasting (BMSB). Institute of Electrical and Electron-
ics Engineers, Chengdu, China, 1–6. https://doi.org/10.1109/BMSB53066.2021.
9547069

[23] Polygonal Mind. 2018. Low Poly Ofce Pack: Characters & Props.
https://assetstore.unity.com/packages/3d/characters/low-poly-ofce-pack-
characters-props-119386

[24] Spatial Systems. 2016. Spatial. https://spatial.io/
[25] Steel Crate Games. 2015. Keep Talking and Nobody Explodes. https:

//keeptalkinggame.com/
[26] styanton. 2015. Maze Generator. https://assetstore.unity.com/packages/tools/

modeling/maze-generator-38689
[27] Balasaravanan Thoravi Kumaravel and Bjoern Hartmann. 2022. Interactive

Mixed-Dimensional Media for Cross-Dimensional Collaboration in Mixed Reality
Environments. Frontiers in Virtual Reality 3 (2022). https://doi.org/10.3389/frvir.
2022.766336

[28] Balasaravanan Thoravi Kumaravel, Cuong Nguyen, Stephen DiVerdi, and Bjoern
Hartmann. 2020. TransceiVR: Bridging Asymmetrical Communication Between
VR Users and External Collaborators. In Proceedings of the 33rd Annual ACM
Symposium on User Interface Software and Technology (Virtual Event, USA) (UIST
’20). Association for Computing Machinery, New York, NY, USA, 182–195. https:
//doi.org/10.1145/3379337.3415827

[29] Balasaravanan Thoravi Kumaravel and Andrew D Wilson. 2022. DreamStream:
Immersive and Interactive Spectating for VR. In Proceedings of the 2022 CHI
Conference on Human Factors in Computing Systems (New Orleans, LA, USA)
(CHI ’22). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3491102.3517508

[30] Esa Vikberg. 2021. Optimizing WebRTC for Cloud Streaming of XR. Master’s thesis.
Aalto University. School of Science. http://urn.f/URN:NBN:f:aalto-202108298611

[31] Vinlia Games. 2017. Eye In The Sky. https://www.vinliagames.com/
[32] Vreal Inc. 2022. Next generation streaming technology for XR. https://vreal.net/

https://substance3d.adobe.com/assets/allassets/eb9281d40787949b272ee449014edba1481a7c59
https://substance3d.adobe.com/assets/allassets/eb9281d40787949b272ee449014edba1481a7c59
https://aws.amazon.com/
https://aws.amazon.com/elemental-live/
https://aws.amazon.com/elemental-live/
https://www.oculus.com/workrooms/
https://www.oculus.com/workrooms/
https://www.ffmpeg.org/
https://webrtc.org/
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1145/3025453.3025683
https://doi.org/10.1109/VR.2017.7892377
https://www.ionized.tech/
https://doi.org/10.1145/3311823.3311860
https://doi.org/10.1145/3130859.3131341
https://doi.org/10.1145/3130859.3131341
https://doi.org/10.1145/3357236.3395429
https://doi.org/10.1145/3357236.3395429
https://doi.org/10.1145/3134368.3139218
https://doi.org/10.1145/3134368.3139218
https://hubs.mozilla.com/
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3313831.3376637
https://doi.org/10.1145/3411764.3445323
https://assetstore.unity.com/packages/tools/particles-effects/quick-outline-115488
https://assetstore.unity.com/packages/tools/particles-effects/quick-outline-115488
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://developer.nvidia.com/video-encode-and-decode-gpu-support-matrix-new
https://www.oddravenstudios.com/
https://doi.org/10.1109/IWCMC48107.2020.9148390
https://doi.org/10.1109/IWCMC48107.2020.9148390
https://doi.org/10.1109/BMSB53066.2021.9547069
https://doi.org/10.1109/BMSB53066.2021.9547069
https://assetstore.unity.com/packages/3d/characters/low-poly-office-pack-characters-props-119386
https://assetstore.unity.com/packages/3d/characters/low-poly-office-pack-characters-props-119386
https://spatial.io/
https://keeptalkinggame.com/
https://keeptalkinggame.com/
https://assetstore.unity.com/packages/tools/modeling/maze-generator-38689
https://assetstore.unity.com/packages/tools/modeling/maze-generator-38689
https://doi.org/10.3389/frvir.2022.766336
https://doi.org/10.3389/frvir.2022.766336
https://doi.org/10.1145/3379337.3415827
https://doi.org/10.1145/3379337.3415827
https://doi.org/10.1145/3491102.3517508
https://doi.org/10.1145/3491102.3517508
http://urn.fi/URN:NBN:fi:aalto-202108298611
https://www.vinliagames.com/
https://vreal.net/

	Abstract
	1 Introduction
	2 Related Work
	2.1 Sharing VR Experience in Asymmetric Communication
	2.2 WebRTC and VR
	2.3 Network Streaming Considerations and Limitations

	3 Design and Implementation
	3.1 Interaction Design through Video Player
	3.2 Interaction Design through VR View
	3.3 Network Architecture

	4 Pilot Testing
	5 Discussion and Limitation
	6 Conclusion and Future Work
	Acknowledgments
	References

